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o, m and 8 representations of the orbits of molecular symmetry groups are
tabulated and their mathematical properties discussed. Applications are made
to the theory of molecular vibrations, electronic structures of complexes and
the tensor surface harmonic theory of bonding in clusters. Attention is drawn
to the unified manner in which all these analyses can be carried out using
the spherical shell technique.
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1. Introduction

Group theoretical techniques have found wide application in theories of vibrations
and electronic structures of molecules. At the simplest level, they are routinely
used to classify normal modes of vibration and molecular orbitals in terms of
the point group of the equilibrium nuclear configuration [1]. Orbital symmetries
in the three-dimensional rotation group (appropriate to an idealised spherical
cluster) can be used to derive a useful, qualitative theory of bonding in clusters
[2-5]. A common analysis of all these applications may be based on the o, =,
0... representations generated by a set of functions on a spherical shell [6-8].

It is the purpose of this paper to tabulate the o, 7 and 8 representations for all
the orbits of the common molecular symmetry groups and to show how they may
be used to solve problems in molecular vibrations and electronic structure.

The plan of the paper is as follows. Section 2 sets out the necessary definitions
and shows how all higher representations may be derived from the o or permuta-
tion representation. Section 3 describes the tables and comments on some general
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properties of the representations. Sect. 4 discusses the application to vibrations
of the whole molecule and of groups within it. Seet. 5 shows that the tables, in
conjunction with Tensor Surface Harmonic Theory, can predict anomalous elec-
tron counts of borane clusters.

2. Group theoretical background

Consider a molecule belonging to a point group G and consisting of various
fragments. Often these fragments are atoms, but in particular applications they
may be ligand molecules or functional groups. The total set of fragments can be
resolved into subsets (or orbits of the group G) containing equivalent units that
are permuted by symmetry operations of the group. Thus the nuclear framework
of a methane molecule falls into two orbits

CH,=[C]+[H!™ ... H"]

but for B¢HZ™ it may be convenient to treat the molecule either as a sum of atoms
or of —BH units

BsHs=[(BH)™ ... (BH)*".

Each orbit O, is characterised by a site symmetry group, H,, a subgroup of G
which describes the symmetry of the world as seen from one atom in the orbit.
Consideration of those elements of symmetry which may pass through an atom
not situated at the centre of a molecule [9] shows that for a non-central atom
H, must be one of C,, C,, C, or C,, (n=2). If there is an atom at the centre, it
has the full molecular symmetry G. The order of the orbit O,, i.e. the number
of equivalent fragments in the set, is the ratio of the orders of G and H,. The
largest orbit of G is generated by the action of the symmetry operations on a
point in the general position; the order of this orbit is |G| and its site symmetry
group is C,. As an illustration of these concepts, Fig. 1 shows all the orbits of
the Dy, point group.

For any orbit of non-central fragments we may define a spherical surface passing
through all the members of the set. Functions associated with each fragment may
then be classified as o, o, §... with respect to the radial vector from the centre
‘of the sphere. The reducible representation of G generated by a o function on
each member of an-orbit is I',, the permutation representation. Its character
under any operation of G is simply the number of points in the orbit left unshifted
by that operation. Similarly I",, (T's) are the representations generated by a pair
of 7 (8) functions on each fragment.

Some other representations to be defined are I'y, I',, I'xyz and I'rgg. [y is the
fotally symmetric representation with character +1 under every operation. I', is
the antisymmetric or pseudoscalar representation with character +1 under proper
and —1 under improper operations. I'yy is the representation of a set of cartesian
unit vectors at the origin. I'ygs is the regular representation, the reducible
representation in which each irreducible representation of G appears a number
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Fig. 1. Orbits of the D,, point group. The first diagram shows the orientation of the symmetry
elements, and the others show the eight distinct orbits of the group. O, is a single point lying on all
symmetry elements. O, is a pair of points lying on C,, related by the horizontal mirror plane. O,
and O, are sets of four points in oy lying on C3 or Cj axes respectively. Ogq and Oy, are sets of
eight points in the o4 or o, vertical planes but not in o,. Oy, is a set of eight points in oy, but not
on any rotational axis. Oy is the set of 16 points produced by each of the 16 operations of the group
acting on a point in the general position. These orbits and theit site groups are listed in Table 1

of times equal to its dimension. Thus each one-dimensional representation occurs
once, each doubly-degenerate representation twice and so on. Separably degener-
ate representations (such as E in C;) appear only once. The character of I'ggg is
|G| under the identity but zero under all other operations. Thus I'ggg is the o
representation of the largest orbit of G.

As stated above, the character of I', is easily derived for any orbit. A very
convenient method for the derivation of 7, 5 and higher representations is given
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in [8]. For I',. and I'; we have
I, =T, xI'xyz—T, (1)
Is=T.XTxyz—T,—Tox{Ty+T,) 2)
and for higher angular momentum functions (L=2)
P =T xTxyz =T =T (3)

I'; for a molecule can be obtained by summing over for all the orbits present in
the structure. Thus from a tabulation of I',, I' ... . . for all the orbits of a particular
point group, the representations for any molecule of that symmetry may be written
down by inspection. This is a similar approach to the Brester tables for symmetries
of normal modes [9, 10] but gives more information, allowing us for instance to
pick out the symmetries of the CO stretches in a carbonyl complex by inspection
(Sect. 4). Tables of o, 7, §... representations are also applicable to problems in
MO theory and the split into o and 7 symmetries assumes particular significance
in the theory of bonding in clusters (Sect. 5).

Finally, it should be mentioned that the o, #... representations can also be
treated in terms of “ascent in symmetry” [9, 11]. Suppose that a function is a
basis for a representation I'; in the site symmetry group of the fragment (H,).
The assembly of such functions spans a representation I'r in the molecular point
group- (G) where I'r may be determined by following I'; through the ascent in
symmetry from H, to G. In these terms, I', arises from the totally symmetric
representation I'y in H, whereas ', comes from the remainder of the vector
representation I'xyz—I. (In the allowed site groups I'xyz always contains I's.)
T',, T,....could be derived by using the ascent-in-symmetry tables [11] though
the present method is perhaps more straightforward.

3. The tables

To construct a set of tables which will be useful for all molecules of a given
point group it is only necessary to obtain I',, I', I's for each possible orbit of
the group. It is a straightforward task to enumerate the orbits of any given group
and this has been done for most of the useful point groups by Brester [10], Jahn
and Teller [12]. The corresponding site groups are listed by Rytter [13].

For any orbit, the o representation is obtained by inspecting the effect of symmetry
orbitals on the set of points in the orbit. I',, and I'; can then be found using (1)
and (2). It is convenient to carry out this step with the character form of I, and
then reduce the results in the usual way.

Table 1 lists T',, I, and T'; for all the orbits of the common molecular point
groups. In the table some conventions are used, and these are as follows. O,
denotes an orbit of order n. The column labelled “m” gives a symbol for the
number of times the orbit occurs in a particular molecule, following the notation
used in [10]. Thus m, is the number of sets of nuclei on all elements of symmetry;
m,, Mj, My, ...M,, Mg, My, M,, M,,, ... M, are numbers of sets associated with
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Table 1. o, 7 and & representations of molecular point groups, broken down by orbit. O,, is the orbit
of order n and m is the number of times it occurs in a particular molecule. Further explanation of
the symbols is given in the text. For each group the regular representation is given explicitly as the
o representation for the largest orbit, but otherwise abbreviated as I'gp. * Denotes a central O, orbit

Point Site
group Orbit group m T, r. Ts
(o 0, & m A Mrec U'pec
C* 0, C, m A'tA" 2I'reG 2lkeg
C¥ 0, C; m  A,+A, 2lreg 2l Rea
C, 0, C, m, A 2B 2A
0, C m A+B M rea 2lreg
G O G m A E E
0O, Cy m A+E ke 2lrEc
C, 0, Cy m, A E 2B
0, C; m A+B+E 2l rec 2lreg
Cs 0, Cs m, A E, E,
Os C, m A+E,+E, 2TReg 2lrec
Cs 0, Cs m, A E, E,
Os C m A+B+E;+E, 2l ReG 2l
D¥ 0, G m,, A+B, 2B, +2B, 2T,
0,, C, m,, A+B, 2B, +2B; 2r,
0, G, m,, A+B, 2B,+2B, 2T,
O, C, m A+B,+B,+B, 2l'rEG ke
Df 0, G m; A +A, 2E 2E
0O, C, m, A+E 2A,+2E 2T,
O C, m A;+A,+2E 2lkec 2l e
Df 0, C, m, A+A, 2E 2B, +2B,
O, G, m, A, +B,+E 2A,+2B,+2E ar,
0, C, m, A;+B,+E 2A,+2B,+2E 2r,
Og C,; m  A;+A,;+B+B,+2E 2lgg 2l ges
D¥ 0, Cs ms A+A, 2E, 2E,
Os C, m, A,+E,+E, 2A,+2E,+2E, ar,
O, € m A;+A,+2E,+2E, Pl 2l reG
D¥ 0, Cs mg A;+A, 2E, 2E,
Oy €, my A,+B,+E +E, 2A,+2B,+2E;+2E, 2I',
O, C, m, A;+B;+E +E, 2A,+2B,+2E,+2E, 2I,
0, C,; m  A;+A,+B +B,+2E, 2Teq 2l rea
+2E,
C,, 0, C,, m, A, B,+B, A +A,
Oy C m,, A;+B, Trea Trec
Oy, €, m,, A;+B, I'rec Trec
0, C, m A;+A,+B,+B, M reg Mrea
Cs, 0, Cs, m, A, E E
0, C m, A;+E ' Trec Trec -
O C, m A;tA,+2E 2 res 2l rea
Cyy 0O, Cav m, A, ) E B;+B,
Ou G my A;+B,+E Treo Frec
0, G m, A;+B;+E Trec T'rec
Oy C, m  A;+tA,+B;+B,+2E 2Igps 2l'reg
Cs, 0, Csy my Ay E, E,
o, G m, A;+E +E, I'rec Trec
0, C m A, +A,+2E,+2E, 2k 2l rea
Cov 0O, Cov m, A E, E,

Oea G my A;+B,+E +E, Trea Trec
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Point Site
group Orbit group m T, r. T
Og, Cs m, A,;+B,+E,+E, | A TreG
0,, ¢ m A;+A,+B;+B,+2E, 2lgeq 2lreg
+2E,
C% 0O, C, m, A,+A, 2B, +2B, r,
0., C m, A,+B, Trec Trea
O, C, m A,+A,+B,+B, 2Trea 2l'rEG
Ch O, Cs m; A'+A" E'+E" E'+E"
0, G my, A'+E Trec Trec
Og C, m A'+A"+E+E' A N 2l reG
Ch 0O, C, m, A,+A, E,+E, 2B,+2B,
0O, C, my, Ag+ Bg+ E, Trea Trec
Oy C, m A +A,+B,+B,+E, 2Iggs p) .
+E,
Ch 0, Cs m; A+A” E{+E/ E4+E}
Os C, my, A'+E]+E) Trec Trec
0, € m A+A"+E{+E{+E; 2lggs M rec
+E4
Cgkh 02 C6 m6 Ag+Au E1g+ Elu EZg+E2u
O G m, A,+B,+E+E, I'rec Trec
0, C m  Agt+A+B,+B,+E;, 2lges 2 reg
+E; +E;+Ey,
Df 0, C; my Ay+By, By, +By,+ By +Bs, A, +A+B,,+By,
0, Gy my, A,+B,, By + B+ B3+ By, A,+A,+B,,+B,,
0,, ©C, m,, A,+B;, B, +B;,+B,;+B,, A+ A+ By, +Bs,
04yz Cs myz Ag+ B3g+ Blu + BZu 1—‘REG I‘REG
Ouz G m,, Ag+By+By,+Bs, Trra Prec
O4xy Cs mxy Ag+ B1g+ BZu + B3u 1-‘REG rREG
Og C, m Ag+Au+Blg+B1u A rec 2l'rec
+B,,+B,,+B;,
+Bs,
Df O, Cs, m; Aj+AS E'+E' E'+E"
03 C,, m, A[+E AL+AS+E+E Al+AJ+E+E"
O G my, Af+A;+2E Trec Trec
Os, G m, Aj+AZ+E+E Frec T'rec
0, C m  Al+AT+AL+AL+2E 2 pes 2l rea
+2E"
D O, C, my AtA, E,+E, By +B;,+ By By,
0, C, my Ay, +B+E, Mg+ A, +BtBiy  AptA+By+By,
+E,+E, +E,+E,
0, €, my; A tB,+E, Ayt Ay +BytBy, A tATB B,
+E,+E, +E,+E,
Opn G my  Apt Ayt B+ By, Trea Tres
+2E,
Osa G my A +AytB+By  Tres Trec
+E,+E,
05, G m, AjtAy+B,tB;, Trea Irec
+E +E,
06 C m AtALtATA, ke Mrpe
+B;,+ By +By

+Byy+2E,+2E,
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Table 1 (continued)

Point Site
group Orbit group m T, r, Ts
D% O, Cs, ms Aj+AJ E;+E{ EL+E}
O; Cue m, Aj+E{+E} A +ES+E{+E{+E, A{+A{+E{+E{+E;]
+E5 +E}
O G m, Aj+AL+2E{+2E; Trec Trec
Opv G m, Aj+ASHE+E[+E} Tpes Trec
+EZ
0 C m Aj+A{+AL+A] 2l'rec 2lrec
+2E{+2E{+2E}
+2E5
D§ O, Cey mg AjtAg EgtEm Byt By
O¢ C,, my A;,+ By +E;, T Ey Ay tAg+Bi+By A t+ALTBy+B,,
+E;+E,TE; +E,+E;,+Ep, +E;,
+E,,
O C,, m, A +B,+E,+Ey Ayt Ay +By,+By, A, +A,TB,+By,
+E,+E,tEyt+E,;, +E,+E;,1tE;+E,;,
Opn G my, Alg + AZg +B, By, Irec T'rec
+2E,,+2E,,
Ona G my Ay tAy+B+By  Tree I'rec
+E, +E,+ Byt Ey,
Oy G m, AtAy+B,+By  Tree Trec
+E;;+E,+ By
+Eqy
0, G m A+ At AyptAy  2gee 2lrpG
+ B1g+ B,.+ Bzg
+ By, + 2B, +2E,,
+2E,,+2E,,
D% 0, C,, m; A;+B, 2E A,+A,+B,+B,
0, C, m, A,+B,+E 2A,+2B,+2E 2r,
0. G my A;+B,+E Trec Tres
O4 C, m A +A,;+B,+B,+2E 2lgzg 2Rz
D 0, Cs, mg A +Ay, E,+E, E,+E,
O C, m, A;,,+A,+E+E, 2A,,12A,,+2E,+2E, 2T,
O G my At+Ay,+tE+E, T'rec Trec
On G m A tALtA+A),  2Res Arpe
+2E_+2E
3 u
D%} O, Cay mg A;+B, E,+E; 2E,
O C, m, A,+B;+E,+E,+E; 2A,+2B,+2E;+2E, 2I,
+2E;
Osa G my A +By+E+E,+E;  Tres I'rec
0, C m  A;+A,+B;+B,+2E;, 2lges 2l rec
+2E,+2E,
D# O, Cs, My At Ag, E;+E, E,+Ey,
0,0 G, my; A tAtE,+E, 2A,,+2A,,+2E, ar,
+EyTE,, +2E,,+2E,,+2E,,
Qs G my ApptA),+E,+tE, Tgec Trec
+Ey+E,,
0 € m A tALtTAytTA, 2lkes W'rpc

+2E;,+2E,+2E,,
+2E,,
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Point Site
group Orbit group m T, r. Is
D O, Cey m;, A;+B, E,+E; E,+E,
0, GC, m, A +B+E+E,+E; 2A,+2B,+2E,+2E, 2I,
+E,+E; +2E;+2E,+2E,
Opa G my A+By+E +E+E; I'rec Trec
+E,+E;
0, € m A +A,+B+B,+2E, 2lges 2l Rec
+2E,+2E;+2E,
+2E;
S¥ 0, C, m, A+B 2E r,
0, C, m A+B+E Wrea e
S¥ 0, C, m; A +A, E,+E, E,+E,
Og C, m A, +A+E,+E, 2lre Mreg
T* 0, G m; A+T E+2T -
Og C, m, A+E+T 4T 2T,
0, € m A+E+3T 2T rec 2IrEc
T* 0, C,y m; A +T, E+T,+T, j
O C,y m, A,+E+T, 2T, +2T, A +A,+2E+T,+T,
0, C my A +E+T+2T, Trec Trec
0, C, m A, +A,+2E+3T, 2l'rEG 2lrec
+3T,
TF Os C,, m; A+E+T, 2T, +2T, A,+A,+E,+E,+T,
+T,
Oy Cs m; A, +A+T,+T, E,+E,+2T,+2T, r,.
0, C, m, A,+E +T,+2T, Trec Trec
0,, C, m  A,+A+E+E +3T, 2lgec ] R
+3T,
o* O C, m, A +E+T, 2T, +2T, 2A,+2E+2T,
Oy C; m;, A +tA+T,+T, 2E+2T,+2T, r.
0, G, m, A;+E+T,+2T, 2A,+2E+4T,+2T, ar,
0,, C m A,+A,+2E+3T, e 2lgec
+3T,
O Os C4 my A+E-T, Tigt Tyt ToutToy Ayt Ay, +E,+E +T,,
+T2u
Og Ciy m; At Ay, +T+Tyy, E,+E,+ T+ T+ T, T,
; +Ty
012 C2v m, A1g+Eg+Tlu+T2g A23+A2u+Eg+Eu A1g+Alu+Eg+Eu+T1g
+Ts, +2T, + 2T, + Ty + T+ 2T +2T5,
+ T2u
Oy G My A+ Ay +E,+E+T, Trec Irec
+2T, .+ 2ng+ Tay
O G my A, et AZg + 2Eg + Tlg Trec I'rec
+2T;,+ To +2T5,
04 C; m A tAuFA+HA 2Tees 2 gec
+2E,+2E,+3T,,
+3T,+ 3T, +3Ty,
I* 0, GCs ms A+T,+T,+H 2T, +2G+2H 2T,+2G+2H
O, G m; A+T,+T,+2G+H 2T, +2T,+2G+4H r.
05 G m, A+T;+T,+2G+3H 4T,+4T,+4G+4H r,
Oge € m A+3T,+3T,+4G+5H 2Tgeg 2I'geG
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Table 1 (continued)

Point Site
group Orbit group m T, r. s
54 0, GCs ms A +T,,+T,+H, Tyt Ty, G+ G, T+ Ty + G+ G,
+H,+H, +H,+H,
0, Gy, my; A,+T,+T,+G, Tyt Tyt T+ Ty, r.
+G,+H, +G,+G,+2H,
+2H,
05 G, m, A,+T,,+T,,+G, 2Ty, + 2T, +2T,, A, +A+T +Ty,
+G,+2H,+H, +2T,,+2G, +2G, +T,,+ T2, +2G,
+2H,+2H, +2G,+3H,+3H,
060 Cs my IAg + Tlg + 2T1u + T2g FREG FREG
+2T,,+2G,+2G,
+3H,+2H,
010 C m A +A 3T, +3T,,  2IRes 2T'rEc
+3T,,+3T,, +4G,
+4G,+5H,+5H,
Cov O; Cu myg ZF I A
D%, 0, Co my Ty+E] I, +1I1, A tA,

symmetry elements C,, C;,C,. .. 0y, 04, 0y, C5, C,4, . . . 0y,. m with no subscript
is the number of sets of nuclei in general position, i.e. on no element of symmetry.
For groups where a single atom can occupy the central position (the “point” of
the point group) the o, 7. .. classification does not apply to the orbit O,. Such
groups are marked * in the table and this orbit is not listed for them. N, the total
number of atoms in a molecule, is recovered by multiplying each “m” symbol
by the order of the orbit. Thus for an O, molecule

N=m,+ 6m,+8m;+ 12m, +24m4+ 24m; + 48m

SFs has my=1 and m, =1 whereas CgH; (cubane) has m; = 2. The total o or =
representation is correspondingly derived by multiplying each “m” symbol by
I', or I',, for the orbit. Thus for a T4 molecule

I, =(myg+m,+m;+m)A; +mA,+ (m,+my+2m)E
+(mg+3m)T, + (m;+m,+2m4+3m)T,
so that I'; is A; +T, for CH4 and 2A, +2T, for B,Cl,. Similarly T, is E+T,+T,
for CH,.

From inspection of the table a number of mathematical properties of the o, ,
8. .. representations are evident. Some of these are now discussed.

(i) One obvious property of T, for any orbit is that it contains I',, the totally
symmetric representation, exactly once. We can always construct one totally
symmetric combination by taking in-phase o orbitals on all fragments. Since any
two members of the set are exchanged by some symmetry operation, no other
combination of phases can be totally symmetric. The number of times that I’ o
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occurs in the o representation for a molecule is thus equal to the number of sets
of equivalent nuclei, excluding any central atom.

(i1) The largest orbit Og has o representation I'ggg, since the o characters are
(|G|, 0,0...). In the table it is seen that T',. and T'; for this orbit are both 2l reG -
This follows from (1) and (2). For example T, is calculated from
T, IG| 0 0...
Ixyz 3L

(T, xTxyz) 3Gl 0 0...
-r, -|Gl 0 o...

| 2IGl 0 0...

The recursion relation (3) may be used in a similar way to show that

F-rr = F3 = FL(L> 2) = 21—‘0- = ZFREG for OG
(iii) Many of the point groups in the table have an orbit of order 3/G|. The site
group of such an orbit must be C, or C,, and in each case regularities in the
higher I'y arise. When the site group is C, it may be shown by considering
characters that both I' | and I'; are equal to I'ggg. It is not difficult to prove that
this holds for all higher L and thus

I''(L>0)=Treg (for half orbit with H, =C,)

When the site group is C, it is seen from the table that I'; =2I',. Again using
arguments based on characters it is easily proved that the general pattern is an
alternating series with, for even angular momentum,

I (L>0)=2I", (for half orbit with. H,=C,)
and for odd angular momentum
F2L+1(L> 0) = F‘n’ (fOI’ half Orbit With HA = Cz)

(iv) Another regularity that emerges on inspection of the table is that for site
groups C; and C,, the 8 representation is equal to I',.. It can be shown that this
is part of a more general pattern which depends on L(mod 3). Thus for Hy=C;

L=0,1,2,3,4,5,6,...

1—‘IL = Fo’a FTI” Fﬂ'a zrcra F7T’ F'ﬁ" 21—‘0, e
and for Hy,=C;,

1"L= Fo’) F‘rra Fﬂ: Fa' X (r0+rs)a r7T7 Fﬂ': Fa X (F0+Fs) .
The repeat length of 3 in this pattern is associated with the C; axis in the site
symmetry. The results in paragraph (iii) show a pattern with period 2 for the
cyclic site groups of order 2. For a C,, site group we have

FL= Fa’9 Ffrs FO’ X (F0+Fs), FTF’ ra’ X (F0+F£)a Fﬂ's DR

and in general a C, or C,, site symmetry group will produce a repeating pattern
in I'y with a period equal to the order of the principal axis. In the extreme case
of C., site symmetry in linear molecules the pattern never repeats.
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(v) The axial groups C, and C,, have a single-point orbit O, for whichthe o, 7. ..
classification can be applied. Trivially, this orbit has site symmetry equal to the
full point group and I', =T, I, =Txyz—T.

(vi) Other relationships between representations for different orbits of the same
group exist. For instance in I,

Fcr(o60) =I(0g0)+T, (O20)
FG(OGO) = ro(012) +r‘rr(012) +F3(O12)

Both are explained by noting that two realisations of the 60-orbit of I, are the
truncated dodecahedron and the truncated icosahedron, so that the 60-vertex
orbit can be constructed either from 20 triangles or 12 pentagons.

4. Applications: (i) molecular vibrations

The present tables can be used to give an orbit-by-orbit breakdown of the
vibrational symmetry of a molecule, the same information as carried by the
Brester tables [10]. In addition they allow an analysis of molecular vibrations
into group stretches and bends to be made by inspection.

I';x is the representation spanned by the 3N independent displacements of the
N atoms in a polyatomic molecule. This is related to the symmetry of the
vibrations, rotations and translations by

Fsn=Tvis+Tror+ 'rraN

and to o and 7 representations by
Nin=T 4+, =T, xI'xyz

for molecules without an atom in a unique, central position, or
Fin=T,X I;X‘){z +1xyz

for molecules with an atom at the “point™ of the point group (i.e. belonging to
groups marked * in the table). The translational representation is just I'rgan =
I'xyz and (for nonlinear molecules) the rotations transform as I, x I'xyz.

We can therefore find I'yy for a molecule by inspection of the table. For example,
a C;, molecule has

I, =(me+m,+m)A,; +mA,+ (m,+2m)E

and
I, =(m,+2m)A; + (m,+2m)A,+ (my+2m, +4m)E.

Since in Cs, I'xyz=A, +E and T'ror= A, +E, the vibrational representation is
Fyig=(mo+2m,+3m—1)A;+(m,+3m—1)A,+ (my+3m,+6m—-2)E

in agreement with [9].
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On the other hand, the Brester tables cannot be applied to problems such as the
determination of the symmetry of the eight CN stretching modes of Mn(CN)3 .
The CN bond lengths form a realisation of the Og4 orbit of the Dyy group, and
their stretches are o displacements. The symmetry of the eight stretches is
therefore, from the Table,

I';(Osq, Dsg) =A;+B,+E; +E,+E;
See [9] for a treatment of this example by the method of ascent in symmetry.

A standard application of group theory uses the number of infrared- or Raman-
active CO stretches of a carbonyl to distinguish between alternative possible
geometries. Thus, from the table, CO stretches in a hypothetical trigonal-
bipyramidal pentacarbonyl span

', (0,,D3)+T,(0;5, Dy) =2A7+ A5+ E'(2ir, 3 Raman)
whereas a C,, geometry would lead to
I, (0;,Ca)+T (04, Cyy) =2A,+ B, +E (3ir, 4 Raman)

5. Applications: (ii) electronic structure of clusters

The concepts of o and = pseudosymmetries have an obvious utility in the
molecular orbital theory of complexes and clusters. It is trivial for example to
use Table 1 to assign point-group symmetries to the o metal-carbonyl bonds in
Cr(CO); (T, for Og in O4) and to the #* tangential ligand orbitals available for
back-donation from the metal (I',, for Og in Oy).

In this section we review one particular application, to the electron counts of
closo-boranes B,H2™. These molecules are deltahedral in shape and held together
by (n+1) skeletal pairs (for S=n=12) [14]. However tetrahedral clusters with
a skeleton of four main group atoms require either 4 (B,Cl,) or 6 (P,) but not 5
skeletal pairs. Three members of the hypothetical supra-icosahedral series (13 <
n=24) are also predicted to use n or {(n+2) but not (n+1) pairs [15,16]. A
recent group-theoretical analysis [17] of Stone’s TSH (tensor surface harmonic)
theory of clusters [2-5] showed that in both cases the non-Wade electron count
is forced by the point-group symmetry of the cluster. The general criterion for a
non-Wade count is found by considering I',,, as reviewed in the present section.

In TSH the skeletal molecular orbitals of a cluster are approximated by the
solutions of a model problem - the free electron on a sphere. These analytical
functions are the scalar spherical harmonics (o), the even () and odd (77) vector
surface harmonics, the even (8) and odd (8) tensor surface harmonics, and higher
functions. For the infinite, spherical model cluster there are three infinite series
of MOs (S%, P°,D%,... L%, P",...L™; P",... L") but for a finite cluster we count
only the first n independent functions of ¢, 7, and 7 type respectively. In spherical
symmetry L and L™ span the same representation and can interact whereas L™
cannot mix with either within the TSH model. In a finite group the o MOs span
T, (w+) MOs span T, (6+3) span I'; and so on. More detailed reasoning
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[3] shows that for a normal deltahedral cluster the (n+1) skeletal pairs occupy
S? and the n bonding L”/L™ combinations, leaving all L™ and the antibonding
L?/L™ combinations empty.

Although the 7 and # MOs are of different spherical symmetries they are related
by a pairing principle. A 7 orbital is converted to a 7 orbital by the parity
operation, a twist of each tangential p orbital in the cluster through 90° all in
the same sense. Stone has shown that this implies a mirror relationship between
bonding 7 and antibonding 4 energies [5]. This persists even after o — 7 mixing
is taken into account [18]. Mathematical aspects of the parity transformations
are discussed in detail in [19] and its effect on 6 orbitals of metal halide clusters
in [7, 20].

In terms of representations the parity operation transforms as I', so that
(L") =T(L")xT,
I(L7)=T(L")xT,

If we define representations as conjugate when they are related by the parity
operation, i.e. I'y and I'y are conjugate if [, =y XI', and I'y=T4 XTI, then the
L™ and L” representations are conjugate. In the spherical group, moreover, I'
and I'y are always distinct. However for the finite groups there are three
possibilities [17]:

(i) T4 is always distinct from its conjugate I'y. Groups of this type contain the
inversion or a gy, mirror plane. They include C;, C;, Csy, Dnt1ya> Cans Swn-2)5
D, Ty, Oy and I,,.

(ii) T, is always self-conjugate. Groups of this type describe chiral molecules
and include C,, D,, T, O and 1.

(iii) Some I'4 are self-conjugate and some are not. The self-conjugate representa-
tions have zero character under improper operations and are doubly degenerate.
Groups of this type are C,, (n>2), Sy, Dsyg and Ty.

These considerations are relevant to the theory of clusters because TSH assigns
essentially bonding character to L™ and antibonding character to L". In case (i)
the total representation I'(ar + 47) splits into two distinct subshells [21]. In case
(ii) it is, with one exception, easy to assign = and # just by counting half of ',
as 7 and half as # The exception is when there is an odd number of a
self-conjugate E-type species in I',.. This may happen also for case (iii).

IfT',, =I'(7w+ ) contains an odd number of a self-conjugate E symmetry species,
the cluster is forced by symmetry to show a non-Wade count [19]. If one MO
component of the E set is , the other is 7 and since the two are degenerate,
they must be nonbonding. If this pair of MOs is empty the cluster has n skeletal
pairs, if full (n+2). Intermediate occupations would lead to Jahn-Teller distortion
and loss of symmetry.

Inspection of Table 1 reveals that for most symmetry groups of types (ii) and
(iii) the representation I', contains an even number of the self-conjugate E
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Table 2. Occurrence of odd numbers of self-conjugate sym-
metry species in ' - n is greater than 2

Group Rep Number
C, Eor E, m,+2m
T E m;+2m
C., EorE, my+2m,+4m (n odd)
E or E, my+2m,+2my+4m (n even)
Ty E m;+2my+4m

species. The exceptions are listed in Table 2 and from them we derive the rules
stated in [17]. A C, or C,, deitahedral cluster (n>2) has a non-Wade count if
the number of skeletal atoms on the C, axis is odd. A T or T4 cluster has a
non-Wade count if the number of sets of four equivalent skeletal atoms is odd.
B,H, and the hypothetical [15] B;cH,s and B,,H,, clusters exemplify the second
rule, whereas the hypothetical B,gH,, cluster has C;, symmetry and illustrates
the first case.

In fact, as Johnston and Mingos have pointed out [21], only if n=3 can the
cluster with an odd number of atoms on the principal axis be both C,, (or C,)
and deltahedral. The cases where n> 3 are nido clusters (which do indeed have
n+2 skeletal pairs). With this restriction the two rules simplify: a deltahedral
cage of T, T4, C; or C;, symmetry has a non-Wade electron count whenever the
number of cage atoms is 3p+1 [21].

6. Applications: (iii) the spherical shell technique

The data in Table 1 facilitate the construction of symmetry-adapted LCAO
functions and symmetry coordinates of molecular motion for any orbit on a
unified basis within the spherical shell technique [6-9]. The symmetry aspects
of TSH theory are exploited to give pictorial representations of symmetry-adapted
functions using a cartographic device, the Mollweide projection. On any orbit
the o symmetry-adapted functions are linear combinations of the local o com-
ponents with coefficients determined by the value of the appropriate central
spherical harmonic at each atomic position. Within the spherical shell technique
[6-8] the orbit geometry is superimposed on Mollweide projections of these
central harmonics. For an orbit of n atoms the o symmetry-adapted functions
are the first n distinct linear combinations to emerge from the superimposition
process.

In qualitative molecular orbital theory the local o components of these symmetry-
adapted functions are atomic orbitals at each position in an orbit. The orbitals
can be of s, p,, d,... type, and because of the constant overlap between
neighbouring components the molecular orbital energies increase with the angular
momentum quantum number of the central harmonic.

For molecular motion, the o component functions are radial displacements of
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the atoms and the symmetry-adapted linear combinations contribute to the
vibrational normal modes and to overall translation of the molecule.

For example, consider the construction of the o-LCAOQ functions for the By,
cage of B;,H5. The structure has I, symmetry and the 120 MOs are the first 12
distinct combinations of the local components obtained by superimposition of
the structure on the icosahedral harmonics [22,23]. The results are shown in

Fig. 2. Spherical shell decomposition of the o representation generated by the B, , cage in I, symmetry.
The cage geometry is superimposed on Mollweide projections of the icosahedral harmonics. The
shading represents regions where the harmonics are positive. The filled circles represent positive
amplitude for the local component, and the size of the local symbol represents the magnitude of the
coefficient (equal to the value of the central harmonic). Open circles and unshaded portions represent
negative amplitudes. For LCAO theory the symbols represent o-oriented atomic orbitals; for molecular
motion the filled circles indicate radial extension and open circles contraction
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Fig. 3. Spherical shell analysis for 7 and 7 functions on the unit sphere. In the standard orientation
7, components point South and w7, components point East. The symmetry-adapted combinations
lie in the local direction of maximum gradient of the central harmonic. As in Fig. 2, the size of the
local symbol indicates the relative contribution to the global combination. Diagrams in the left hand
column correspond in LCAO theory to 7 orbitals of the B,, cage and those on the right to 7 orbitals.
Note that the sets are interchanged on local rotation of the components through 90°. In molecular
vibration theory the T, set corresponds to overall rotation (taking the phase of the atomic p orbital
to indicate the direction of motion on the surface). The T, sets mix vibration and rotation as discussed
in the text
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Fig. 2. The LCAO coefficients are readily determined from the magnitude of the
appropriate harmonic at each atomic position, and the size of the local symbols
is used to indicate the relative contribution to the MO.

Alternatively, considering the results as symmetry coordinates for motion of the
B, cage, it is clear from the figure that the T,, displacements are mainly overall
translation along the x, y and z directions (with the notation that @ corresponds
to radial extension, and O to contraction). The remaining diagrams of the figure
correspond to approximate normal vibrations based on radial “stretching”.

The 7 local components describe angle-changing motions. They span T,,, H,,
Gy, Ty, H, and G, symmetries and the last three sets can be obtained from the
first three by local rotation of all components through 90°.

Fig. 3. continued
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The spherical shell analysis is set out in Fig. 3 where it is evident that the parity
transformation corresponding to local rotations through 90° does indeed intercon-
vert g and u functions. In molecular orbital theory the diagrams of Fig. 3 are
representations of the p.-based molecular orbitals for the B,, cage with the LCAO
coeflicients given by the first partial derivatives of the icosahedral harmonics with
respect to 6 and ¢ [6-9] at each atomic position. To determine orbital energies,
it is necessary to allow for mixing of o and = MOs as in TSH theory [2].

For the analysis of molecular motion it is clear that the T,, combinations of
angular distortions correspond to molecular rotation about the x, y and z axes.
The remaining combinations can be assigned as angle-changing molecular vibra-
tions with the exception of the T,, set which mix translation and vibration. The
normal modes of T,, symmetry can be obtained by suitable combination of the
o and 7 sets so that the symmetry coordinates correspond to one set of pure
angle distortions and a set of pure translations. For gquantitative treatment of the
normal vibrations it is necessary to mix “radial” and “angular” coordinates of
the same symmetry. In this case the H, modes of Figs. 2 and 3 must be combined
to diagonalise the force field. Mixing with the B-H stretching vibrations would
also occur in the full treatment of B;,H3,.
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