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o-, 7r and 6 representations of  the orbits of  molecular symmetry groups are 
tabulated and their mathematical  properties discussed. Applications are made 
to the theory of molecular vibrations, electronic structures of  complexes and 
the tensor surface harmonic theory of  bonding in clusters. Attention is drawn 
to the unified manner  in which all these analyses can be carried out using 
the spherical shell technique. 
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1. Introduction 

Group theoretical techniques have found wide application in theories of  vibrations 
and electronic structures of  molecules. At the simplest level, they are routinely 
used to classify normal modes of vibration and molecular orbitals in terms of 
the point group of  the equilibrium nuclear configuration [1]. Orbital symmetries 
in the three-dimensional rotation group (appropriate to an idealised spherical 
cluster) can be used to derive a useful, qualitative theory of  bonding in clusters 
[2-5]. A common analysis of  all these applications may be based on the tr, 7r, 
~ . . .  representations generated by a set of  functions on a spherical shell [6-8]. 

It i s the  purpose of this paper  to tabulate the o-, ~ and 8 representations for all 
the orbits of  the common molecular symmetry groups and to show how they may 
be used to solve problems in molecular vibrations and electronic structure. 

The plan of  the paper  is as follows. Section 2 sets out the necessary definitions 
and shows how all higher representations may be derived from the o- or permuta- 
tion representation. Section 3 describes the tables and comments on some general 
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properties of  the representations. Sect. 4 discusses the application to vibrations 
of the whole molecule and of groups within it. Sect. 5 shows that the tables, in 
conjunction with Tensor Surface Harmonic Theory, can predict anomalous elec- 
tron counts of borane dusters. 

2. Group theoretical background 

Consider a molecule belonging to a point group G and consisting of various 
fragments. Often these fragments are atoms, but in particular applications they 
may be ligand molecules or functional groups. The total set of  fragments can be 
resolved into subsets (or orbits of the group G) containing equivalent units that 
are permuted by symmetry operations of  the group. Thus the nuclear framework 
of a methane molecule falls into two orbits 

CH4 = [C] + [ H t l ] . . .  H t41] 

but for B6H62- it may be convenient to treat the molecule either as a sum of atoms 
or of - B H  units 

B6H6 = [(BH)[I] �9 �9 �9 (BH)[6]]. 

Each  orbit OA is characterised by a site symmetry group, HA, a subgroup of G 
which describes the symmetry of the world as seen from one atom in the orbit. 
Consideration of those elements of symmetry which may pass through an atom 
not situated at the centre of a molecule [9] shows that for a non-central atom 
HA must be one of C1, Cs, Cn or Cnv (n >- 2). If there is an atom at the centre, it 
has the full molecular symmetry G. The order of the orbit OA, i.e. the number 
of  equivalent fragments in the set, is the ratio of the orders of G and HA. The 
largest orbit of G is generated by the action of the symmetry operations on a 
point in the general position; the order of this orbit is IG[ and its site symmetry 
group is C1. As an illustration of these concepts, Fig. 1 shows all the orbits of 
the D4h point group. 

For any orbit of non-central fragments we may define a spherical surface passing 
through all the members of the set. Functions associated with each fragment may 
then be classified as o-, ~-, 8 . . .  with respect to the radial vector from the centre 
o f  the sphere. The reducible representation of G generated by a o- function on 
each member of a n  orbit is F~, the permutation representation. Its character 
under any operation of G is simply the number of points in the orbit left unshifted 
by that operation. Similarly F~ (F~) are the representations generated by a pair 
of ~r (8) functions on each fragment. 

Some other representations to be defined are Fo, F~, Fxyz and FREt. Fo is the 
totally symmetric representation with character +1 under every operation. FE is 
the antisymmetric or pseudoscalar representation with character + 1 under proper 
and - 1 under improper operations. Fxvz is the representation of a set of cartesian 
unit vectors at the origin. FREG is the regular representation, the reducible 
representation in which each irreducible representation of G appears a number 
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Fig. 1. Orbits of the l)4h point group. The first diagram shows the orientation of  the symmetry 
elements, and the others show the eight distinct orbits of  the group. O1 is a single point lying on all 
symmetry elements, 02 is a pair of  points lying on C4, related by the horizontal mirror plane. 04, 
and 04 are sets of four points in cr h lying on C~ or C~ axes respectively. Osd and Osv are sets of  
eight points in the ~ra or t~v vertical planes but not in o h. O8~ is a set of eight points in % but not 
on any rotational axis. O16 is the set of  16 points produced by each of  the 16 operations of  the group 
acting on a point in the general position. These orbits and theft" site groups are listed in Table 1 

of times equal to it:s dimension. Thus each one-dimensional representation occurs 
once, each doubly-degenerate representation twice and so on. Separably degener- 
ate representations (such as E in C3) appear only once. The character of FREe is 
[GI under the identity but zero under all other operations. Thus Free is the o- 
representation of the largest orbit of G. 

As stated above, the character of F~ is easily derived for any orbit. A very 
convenient method[ for the derivation of 7r, 6 and higher representations is given 
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in [8]. For F= and F~ we have 

F~ =F r  XFxy z - F ~  

Fs = F~ x F x v z -  F,~ - F,~ x ( r  o + F~) 

and for higher angular momentum functions ( L - 2 )  

F L +  1 ~-~ F L x Fxyz - FL -- FL-a 
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(1) 

(2) 

(3) 

FL for a molecule can be obtained by summing over for all the orbits present in 
the structure. Thus from a tabulation of F~, F ~ . . .  for all the orbits of a particular 
point group, the representations for any molecule of that symmetry may be written 
down by inspection. This is a similar approach to the Brester tables for symmetries 
of  normal modes [9, 10] but gives more information, allowing us for instance to 
pick out the symmetries of the CO stretches in a carbonyl complex by inspection 
(Sect. 4). Tables of o~, 7r, 6 . . .  representations are also applicable to problems in 
MO theory and the split into o- and 7r symmetries assumes particular significance 
in the theory of bonding in clusters (Sect. 5). 

Finally, it should be mentioned that the o-, ~-.. .  representations can also be 
treated in terms of "ascent in symmetry" [9, 11]. Suppose that a function is a 
basis for a representation Fy in the site symmetry group of the fragment (HA). 
The assembly of such functions spans a representation FF in the molecular point 
g roup  (G) where FF may be determined by following Ff through the ascent in 
symmetry from HA to G. In these terms, F= arises from the totally symmetric 
representation Fo in HA whereas F,~ comes from the remainder of the vector 
representation F x v z - F o .  (In the allowed site groups Fxvz always contains Fo.) 
F~, F,~.. .  could be derived by using the ascent-in-symmetry tables [11] though 
the present method is perhaps more straightforward. 

3. The tables 

To construct a set of tables which will be useful for all molecules of a given 
point group it is only necessary to obtain F~, F,~, F~ for each possible orbit of 
the group. It is a straightforward task to enumerate the orbits of any given group 
and this has been done for most of the useful point groups by Brester [10], Jahn 
and Teller [12]. The corresponding site groups are listed by Rytter [13]. 

For any orbit, the o- representation is obtained by inspecting the effect of symmetry 
orbitals on the set of points in the orbit. F~ and F~ can then be found using (1) 
and (2). It is convenient to carry out this step with the character form of  F~ and 
then reduce the results in the usual way. 

Table 1 lists F~, F,~ and F~ for all the orbits of the common molecular point 
groups. In the table some conventions are used, and these are as follows. On 
denotes an orbit of order n. The column labelled "m"  gives a symbol  for the 
number of times the orbit occurs in a particular molecule, following the notation 
used in [10]. Thus mo is the number of sets of  nuclei on all elements of symmetry; 
m2, m3, m4, �9 �9 my, md, mh, m2, m2x, �9 - myz are numbers of sets associated with 
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Table 1. ~r, ~r and ~5 representations of molecular point groups, broken down by orbit. O n is the orbit 

of order n and m is tl~e number of times it occurs in a particular molecule. Further explanation of 
the symbols is given in the text. For each group the regular representation is given explicitly as the 
~r representation for the largest orbit, but otherwise abbreviated as FREe. * Denotes a central O1 orbit 

Point Site 
group Orbit group m F~ F~ F~ 

C1 O1 C1 m A 2FRE G 2FRE G 
C~* 02 C1 m A' + A" 2FRE G 2FRE G 
Ci* 02 C1 m Ag + A u 2FRE G 2FRE G 
C2 O1 C2 m o A 2B 2A 

02 Cl na A + B 2FRE G 2FRE G 
C3 Ol C3 m o A E E 

0 3 C~ i:n A + E 2FRE G 2FRE ~ 
C4 O1 C4 m o A E 2B 

O 4 C 1 m A + B + E 2FRE G 2FRE G 
C 5 01 C 5 m o A E 1 E 2 

05 C1 in A + E 1 + E 2 2FRE G 2FRE G 
C6 O1 C6 m o A E 1 E 2 

06 C 1 m A + B + E 1 + E 2 2FRE G 2FRE G 
DE* O2x C2 m2x A+B3 2B1+2B 2 2F~. 

O2y C 2 m2y A+B 2 2BI +2B 3 2F~ 
O2z C2 m2z A + B  1 2B2+2B 3 2F~ 
O4 C1 m A + B1 + B2 + B3 2FRE6 2FREG 

D3* 02 C3 rn3 AI + A2 2E 2E 
O 3 C a m 2 A I + E  2A 2+2E 2F~ 
0 6 C1 rn A 1 + A 2 + 2E 2FRE G 2FRE G 

D4* 02 C4 m 4 A I + A  2 2E 2B1 +2B2 
O4, C2 rn2, A I + B 2 + E  2A2+2B1 +2E 2F~ 
O 4 C a m 2 A 1 + B 1 + E 2A 2 + 2B 2 + 2E 2F~ 

08 C 1 m A I + A 2 + B 1 + B 2 + 2 E  2FRE G 2ERE G 
Ds* 02 C5 r% A I + A  2 2E 1 2E 2 

O5 C2 m2 A I + E I + E 2  2A2+2E1+2E2 2F~ 

O1o C1 m Al + A2 + 2E1 + 2E2 2FREG 2FRE G 
D6* 02 C 6 na 6 A I + A  2 2E 1 2E 2 

06, C2 mz A1 + B 2 + E I + E 2  2A2+2B1 +2E1 +2E ~ 2F~ 
06 C2 ha2 A~+BI+E1+E2  2A2+2B2+2El+2E2 2F~ 

O12 C1 m A I + A 2 +  BI+B2+2E 1 2FRE G 2FRE G 
+ 2E 2 

CEv O1 CEv mo A1 B 1 +B 2 A I + A  2 
O2x~ C~ m~ AI+B1 FRE G FRE e 
Oey z C s my z A~ + B 2 FRE e FRE G 
O 4 C 1 m A1 + A2 + B1 + B2 2FREG 2FREG 

C3v O1 C3~ mo A 1 E E 
03 C~ m v A~+E FRE G FRE G 
0 6 C 1 m AI + A2 + 2E 2FRE G 2FRE e 

C4v O1 C4v 1T[0 A1 E B 1 + B 2 

O4d Cs IEId A1 + B2 + E FRE e FRE G 
O4v C s In v A 1 + B 1 + E FRE G FRE G 
Os C1 m A1 + A2 + B1 + B2 + 2E 2FRz G 2FRE G 

Csv O1 C5. mo AI E1 E2 
0 5 C~ m~ A 1 + E  1 + E  2 FRE G FRE e 
O10 C 1 m A 1 + A 2 + 2E 1 + 2E 2 2FRE G 2FREG 

C6v O1 C6v mo A1 E 1 E 2 
O6d Cs md A1 + B2 + E 1 + E 2 FRE G FRE G 



338 P.W. Fowler and C. M. Quinn 

Table 1 (continued) 

Point Site 
group Orbit group m F~ F~ F~ 

O6,, C~ m~ A~ + B l + E 1 + E 2 FRE G FRE G 
O~2 C~ m AI+A2+B1+B2+2E 1 2ERE G 2FRE G 

+ 2E 2 
C2~h 02 C2 m2 Ag+A~ 2Bg+2B u 2F~ 

O2h Cs mh AgWB u FREG FREG 
04 C1 m Ag+A~+Bg+Bu 2FREG 2FRE~ 

C*h Oz C3 m 3 A'+A" E'+E" E'+ E" 
O 3 C~ m h A' + E' FRE G FRE G 
06 C~ m A' + A" + E' + E" 2FRE G 2FRE G 

C*h 02 Ca m4 Aa+A~ Eg+E u 2Bg+2B u 
04 C~ m h Aa+Bg+Eu FRE o FRE o 
Os C x m Ag .~- A u + Bg + ]]u + Eg 2FRE G 2FRE G 

+ E u 
C*h 02 Cs m s A' + A" E~ + E~' E~+E~ 

Os C~ m h A'+E~+E~ ERE G FRE G 
p rt t t !  ! Ox0 C1 m A +A +Ea+E  I + E  z 2FRE o 2FREo 
+E~ 

C6"ia 02 C6 m 6 A~ + A u Elg + Elu E2g q- Ezu 
06 Cs mh Ag+Bu+E2g+Elu FREO FREa 
O12 Cl m Ag+Au+ Bg+Bu+Elg 2rRE G 2ERE G 

+ Elu + E2g + E2g 
D*h O2. C2v m2z Ag+ Blu B2g+ B2u+ B3g+ Bau Ag+Au+ Big+ Blu 

02y C2v m2y Ag + B2u Big+ Blu+ B3g+ B3u Ag+Au+ B2g+ B2u 
O2x C2v m2x Ag+ B3u Big+ Blu+ B2g+ B2u Ag+ Au+ B3g+ B3u 
O4yz Cs myz Ag+ B3g+ Btu+ B2u FREG FREG 
O4x z C s mxz Ag+ B2g + Blu + B3u FRE G FRE G 
04xy Cs mxy Ag+ Big+ B2u+ B3u FREG FREG 
Os Cl m Ag+Au+Blg+Blu 2FRE o 2FREG 

+ B2g + B2~ + B3g 
+ B3u 

D* h 02 C3v m 3 A~+A~ E '+  E" E'+ E" 
03 C2v ul 2 A~+E' A-~ +A~ + E'+ E" A~ +A~'+E'+ E" 
O6u Cs mh A~+A'~+2E' ERE G FRE G 
06., , C s m v A~ + A~ + E'+ E" FRE G FRE G 

! tt t tt i O12 C 1 m A~+A1 + A z + A z + 2 E  2FRE o 2FREG 
+ 2E" 

D*h O2 C4v m4 Alg+ A2u E~+Eu BIg+ Blu+ BEg+ Bzu 
O4, Czv m2, Alg+ B2g+ Eu Az~+A2u+ Big+ Blu Alg+Alu+B2s+B2u 

+Eg+Eu +Eg+Eu 
04 Czv m2 Alg+Blg+Eu A2g+ A2u+ B2g+ B2u A~g+Alu+ Big+ Blu 

+ Eg + E~ + Eg + E u 
Osh C~ mh Alg+A2g+BI~+B2g FREG FREG 

+ 2E u 
Osd C~ m a Alg + A2~ + Bt u + Bzg FREG FREG 

+ Eg + E u 
Osv C~ m v Als + A2u+ Bag+ B2u ERE G FREG 

+Eg+E~ 
O16 C l m Alg+ AI~+A2g+ A2~ 2FREG 2FREG 

+ Big+ Blu+ B2g 
+ B2u + 2Eg + 2E~ 
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Table 1 (continued) 

Point Site 
group Orbit group m F~ F~ F~ 

D*h 02 Csv ms AI+A~ E l +  El' E~+E~ 
' . +E l  +E  2 A2+E2 + E l + E 1  +E2 AI+AI  + E  ~ 0 5 C2v m2 A~+E1+E~ . . . . . . . . . .  ' " ' 

+E~ +E~ 
Oloh C~ mh A~+A~+2E~+2E~ FRE G FRE G 
0~o~ C~ m v A~+A~+E]+E~'+E-~ ERE G rRE G 

+E~ 
020 C1 m A~ + A~' + A~ + A~ 2FRE G 2FR:E G 

t tt ! + 2 E l + 2 E  1 +2E 2 
+2E~ 

D6* h 02 C6v m6 Alg + A2~ Elg + Elu E2g + E2u 
O 6, C2v m2, Alg+B2u+Elu+E2g A2g+A2u+B1g+Blu Alg+Alu+B2g+B2u 

+ Elg + Exu + E2g + Elg + Elu + g2g + E2u 
+ E2,~ 

06 Czv m2 Alg+ Blu+ Elu+ E2g A2g+ A2u+ B2g+ B2u Alg+AIu+Blg+Blu 
+ Elg+ Elu+ E2g+ E2u + Elg+ Elu + Ezg+ E2u 

012h C s mh Alg + A2g + Blu + B2u FREG FREG 
+ 2E1~ + 2E2g 

O12d Cs md Alg+A2u+ Big+ B2u FREG FREG 
+ Elg + Elu + E2g + E2u 

O12 v C~ my Alg+A2u+ Blu+ B2g FRE G FRE G 
+ Elg + EI~ + E2g 
+ E2~ 

024 C 1 m Alg + Alu + A2g + A2u 2FREG 
+ Big+ Blu-b B2g 
+ B2u q- 2Elg + 2Elu 
+ 2E2g + 2E2~ 

D* a 02 C2v m 4 A l + B 2 2E 
04 C2 m2 A I + B t + E  2A2+2B2+2E 
O4~ C~ ma A 1 + B 2 + E FRE G 
O8 C~ m A I + A 2 + B I + B 2 + 2 E  2FRE G 

D3~d 0 2 C3v m 6 Alg+A2u Eg+Eu 
06 C2 m2 Alg+At~+Eg+E~ 2A2s+2A2u+2Eg+2E,~ 2Fo- 
O6,:1 C s m d ALg + A2u + Eg + E~ FRE G FRE ~ 
O~2 C1 m Alg+ Alu +A2g+A2u 2FRr G 2FRr ~ 

+ 2Eg + 2E u 
Da*o 02 C4v m8 Aa + B2 E1 + E3 2E2 

O8 C2 m2 A I + B t + E I + E z + E 3  2A2+2Be+2Et +2E2 2Fo- 
+ 2E 3 

Osd Cs Znd A1 + B 2 + E I + E 2 + E  3 FROG 
O16 C 1 ]Tn AI+A2+Bt  +B2+2E 1 2FRz G 

+ 2 E 2 + 2 E 3 
Ds* d O 2 C5v I71"1 1 0 Alg + AEu Elg+ Elu 

O1o C2 rla2 Alg + Alu + Elg + EI~ 2A2g + 2A2u + 2Elg 
+ E2g + E2u + 2Ex~ + 2E2g + 2E2u 

Ol0d Cs }lid Alg + A2. + Elg + Etu FRE G 
+ E2g + E2u 

020 C 1 m Alg+Alu+A2g+ A2~ 2FRE G 
+2Elg+2Elu+2E2g 
+ 2E2u 

2FREG 

AI+A2+ Bl+ B 2 
2F~ 
FREG 
2FRz~ 
Eg+Eu 

~REO 
2FREe 

EEg + E2~ 
2F~ 

~REG 

2FREe 
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Table 1 (continued) 

Point Site 
group Orbit group m F,~ F~ F~ 

D6*d 02 C6v ml2 AI+B2 El+E5 E2+E 4 
O12 C2 m2 A~+BI+E1+E2+E 3 2A2+2B2+2El+2E 2 2F~ 

+ Ea + E5 + 2E3 + 2E4 + 2E5 
md A1 + B2 + El + E2 + E3 FREG FREG 

+ E4 + E5 
m A1 +A2+ BI + B2+2E1 2FRE o 2FRE c 

O12d Cs 

024 C1 
+2E2+2E3+2E 4 
+ 2E 5 

$4" 02 C2 m2 A+B 2E 
04 C1 m A + B + E  2FRB G 

$6" 02 C 3 m 3 Ag+Au Eg+Eu 
0 6 C 1 m Ag+Au+Eg+E . 2FRE G 

T* O4 C3 m 3 A + T  E+2T 
06 C2 m 2 A + E + T  4T 
O12 C 1 m A+E+3T 2FRE G 

T* 04 C3v m 3 A I + T  2 E+Tx+T z 
06 C2~ m 2 A 1 + E + T2 2T1 + 2T2 
O12 Cs md AI+E+T1 +2T2 FREO 
024 C1 m A 1 + A 2 + 2E + 3T t 2FREo 

+3T2 
T* 06 C2v m2 Ag+Eg+T~ 2Tg+ 2T~ 

O* 

08 C3 
Or2 C~ 
024 C1 

06 C4 
O8 C3 
O12 C2 
024 C1 

O~ 0 6 C4v 

I* 

Og C3v 

O12 C2v 

O24d Cs 

O24h Cs 

048 C1 

O12 C5 
020 C3 
O30 C2 
060 C1 

m3 Ag+A~+Tg+Tu Eg+ E,~+ 2Ta+2Tu 
mh Ag+ Eg+Tg+2Tu FREO 
m Ag+A~+Eg+Eu+3T a 2FRE c 

+ 3T u 
m4 AI+E+T1 
m3 AI+A2+T~+T2 
m2 A 1+E+T 1+2T 2 
m A1+A2+2E+3T 1 

+3T2 
m 4 Alg+ Eg+T lu 

2F,~ 
2FREG 
Eg + E~ 
2FREG 

2F~ 
2FREc 
F~ 
AI+A2+2E+TI+T2 
FREG 
2FRBo 

m3 Alg + A2~ + T2g + Tl:u 

m2 Alg+ Eg+Tlu+T2g 
+T:~ 

Ag+Au+Eg+Eu+Tg 
+Xu 

F~ 
FREO 
2FREG 

2T1 + 2T2 2A 2 + 2E + 2T2 
2E + 2T~ + 2T 2 F~ 
2A2+2E+4T1+2T 2 2F~ 
2FREo 2FREG 

Tlg+Tlu+ T2g+T2u A2g+ A2u+ Eg+ Eu+T2g 
+T2u 

Eg+ Eu+ TIg+TI~+ T2g F~ 
+T2~ 

A2g+ A2~ + Eg+ Eu Alg+AI~+ Eg+E~+T1g 
+ 2Tlg+ 2T1~+ T2g +T1u+2T2g+2T2~ 
+ T2u 

m d Alg + A2u + Eg+ E u + Tlg FRE G FREG 
+ 2T~ + 2T2~ + T2U 

mh Alg+A2g+ 2Eg+Tlg FREG FREO 
+2Tl.  + T2g + 2T2,~ 

m Alg + Aluq- A2g+ A2~ 2FREG 2FRE G 
+ 2Eg + 2E~ + 3Tlg 
+ 3Tlu + 3T2g + 3T2~ 

m5 A+Tt  +T2+H 2T1+2G+2H 2T2+2G+2H 
m 3 A + T I + T 2 + 2 G + H  2T1+2T2+2G+4H F~ 
m2 A+TI+T2+2G+3H 4T1+4T2+4G+4H 2F~ 
m A+3T1 +3T2+4G+ 5H 2FREG 2FREG 



o-, ~r and ~ representations of  the molecular point groups 341 

Table 1 (continued) 

Point Site 
group Orbit group m F~ F= F~ 

Ih* O12 Csv ms A~+Tau+T2~+ Hg Tlg+T1~+Gg+G~ 
+Hg+Hu 

020 C3v m3 Ag+ Tlu +T2u + Gg Tlg+Tlu +T2g+ T2u 
+G~+Hg +Ga+Gu+2Hg 

+2H~ 
O3o C2v m2 Ag+TIu+Tz~+Gg 2Tlg+2Tlu+2T2g Ag+A~+TIg+TI~ 

+Gu+2Hg+Hu + 2T2u + 2Gg+ 2G~ +T2g+T2~ + 2Gg 
+2Hg+2H~ +2G~+3Ha+3H ~ 

060 Cs FREG FREG md Ag + Tlg+2Ttu+T2g 
+2T2u+2Gg+2Gu 
+3Hg+2Hu 

O12 0 C 1 m Ag+ Au+ 3Tlg+ 3Tlu 2FRE G 2FRE G 
+ 3T2g+ 3T2u + 4Gg 
+ 4G u + 5Hg + 5H u 

Co~v O1 C~v laa~ E + i] A 

D*~ 0 2 Co~v I][1oo '~g- -[- EU q- IIg -~- I~ u ag~-A u 

T2g+T2u + Gg + G~ 
+Hs+H~ 

F~ 

symmetry e l e m e n t s  C 2 ,  C 3 ,  C 4 . . . O-v, O'd, O'h, C2 ,  C2x , . . .  O'y z.  m w i t h  n o  subscript 
is the number o f  sets o f  nuclei in general position, i.e. on no element o f  symmetry. 
For groups where a single atom can occupy the central posit ion (the "point" of  
the point group) the ~r, 7r. . .  classification does not apply to the orbit O~. Such 
groups are marked * in the table and this orbit is not listed for them. N, the total 
number of  atoms in a molecule,  is recovered by multiplying each "m" symbol 
by the order o f  the orbit. Thus for an Oh molecule  

N = mo + 6m4 + 8m3 + 12m2 + 24md + 24mh + 48m 

S F  6 has mo = 1 and m4 = 1 whereas C8H8 (cubane) has m3 = 2. The total o- or ~- 
representation is correspondingly derived by multiplying each "m" symbol by 
F~ or F~ for the orbit. Thus for a Ta molecule  

F~ = (md + m2 + m3 + m)A1 + mA2 + (m2 + ma + 2m)E 

+ (ma + 3m)T~ + (m3 + m2 + 2ma + 3re)T2 

so that F= is A1 + T2 for CH4 and 2A1 + 2T2 for B4C14. Similarly F~ is E + T~ + T  2 

for CH4. 

From inspection of  the table a number of  mathematical properties of  the ~r, ~-, 
6 . . .  representations are evident. Some of  these are now discussed. 

(i) One obvious property of  F= for any orbit is that it contains F0, the totally 
symmetric representation, exactly once. We can always construct one totally 
symmetric combination by taking in-phase cr orb'itals on all fragments. Since any 
two members of  the set are exchanged by some symmetry operation, no other 
combination of  phases can be totally symmetric. The number o f  times that Fo 
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occurs in the o- representation for a molecule is thus equal to the number of sets 
of equivalent nuclei, excluding any central atom. 

(ii) The largest orbit OG has o- representation FRE6, since the o- characters are 
(IGI, 0, 0. . . ) .  In the table it is seen that F~ and F~ for this orbit are both 2FREG. 
This follows from (1) and (2). For example F~ is calculated from 

IGI o o . . .  
Fxyz 3 . . . . .  

(F~• 3]G[ 0 0 . . .  
-IGI 0 0 . . .  

21GI 0 0 . . .  
The recursion relation (3) may be used in a similar way to show that 

F ~ = F a = F L ( L > 2 ) = 2 F ~ = 2 F R E G  forOG 

(iii) Many of the point groups in the table have an orbit of order �89 The site 
group of such an orbit must be C2 or Cs, and in each case regularities in the 
higher FL arise. When the site group is Cs it may be shown by considering 
characters that both Fr and I?~ are equal to F~EG. It is not difficult to prove that 
this holds for all higher L and thus 

FL(L> 0) = FRZG (for half orbit with HA = Cs) 

When the site group is C2 it is seen from the table that Fs = 2Fr Again using 
arguments based on characters it is easily proved that the general pattern is an 
alternating series with, for even angular momentum, 

F2L(L> 0) = 2F~ (for half orbit with H A--- C2) 

and for odd angular momentum 

F2L+I(L> 0) = F~ (for half orbit with HA = C2) 

(iv) Another regularity that emerges on inspection of the table is that for site 
groups C3 and C3v the ~ representation is equal to F=. It can be shown that this 
is part of a more general pattern which depends on L(mod 3). Thus for HA = C3 

L = 0 ,  1, 2, 3,4, 5 , 6 , . . .  

FL = F~, F~, F=, 2F~, F=, F=, 2F~ , . . .  

and for HA = C3~ 

FL= F~, F=, F=, F~ x (Fo+ F~), F~, F~, F~ x (Fo+F~) �9 �9 

The repeat length of 3 in this pattern is associated with the C3 axis in the site 
symmetry. The results in paragraph (iii) show a pattern with period 2 for the 
cyclic site groups of order 2. For a C2v site group we have 

FL= F~, F,~, F~ x (F0 + F~), F=, F~ x (Fo + F~), F,~,. . .  

and in general a C,  or C.~ site symmetry group will produce a repeating pattern 
in FL with a period equal to the order of the principal axis. In the extreme case 
of C~v site symmetry in linear molecules the pattern never repeats. 
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(v) The axial groups Cn and Cnv have a single-point orbit O1 for which the ~, ~-.. .  
classification can be applied. Trivially, this orbit has site symmetry equal to the 
full point group and F~ = Fo, F~ = F x y z -  Fo. 

(vi) Other relationships between representations for different orbits of  the same 
group exist. For instance in Ih 

F~(O6o) = F~(Ozo) + F=(O2o) 

r (O o) = + r (ol ) + 

Both are explained by noting that two realisations of  the 60-orbit of  Ih are the 
truncated dodecahedron and the truncated icosahedron, so that the 60-vertex 
orbit can be constructed either from 20 triangles or 12 pentagons. 

4. Applications: (i) molecular vibrations 

The present tables can be used to give an orbit-by-orbit breakdown of the 
vibrational symmetry of  a molecule, the same information as carried by the 
Brester tables [10]. In addition they allow an analysis of molecular vibrations 
into group stretches and bends to be made by inspection. 

F3N is the representation spanned by the 3N independent displacements of the 
N atoms in a polyatomic molecule. This is related to the symmetry of the 
vibrations, rotations and translations by 

F3N = FvI  B + FROT-t- FTRAN 

and to o- and 7r representations by 

F3N = F,~ + F~ =: F~ • F x y  z 

for molecules without an atom in a unique, central position, or 

F3N = F~ • r x y  z -t- F x y  z 

for molecules with an atom at the "point"  of the point group (i.e. belonging to 
groups marked * in the table). The translational representation is just FT~N = 
Fxvz and (for nonlinear molecules) the rotations transform as F~ x Fxyz.  

We can therefore find Fvm for a molecule by inspection of the table. For example, 
a C3v molecule has 

F~ = (too+ mv+ re)A1 +mA2+ (mv+ 2m)E 

and 

F,, = (mv + 2m)A1 + (my + 2m)A2 + (mo + 2my + 4m)E. 

Since in C3v Fxvz = A1 + E and FROT = Ae + E, the vibrational representation is 

Fvm = (mo + 2mv + 3m - 1)A1 + (mv + 3m - 1)A2 + (too + 3mv + 6m - 2)E 

in agreement with [9]. 
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On the other hand, the Brester tables cannot be applied to problems such as the 
determination of the symmetry of the eight CN stretching modes of Mn(CN) 4-. 
The CN bond lengths form a realisation of the Osd orbit of the D4d group, and 
their stretches are or displacements. The symmetry of the eight stretches is 
therefore, from the Table, 

F~ (Osd, D40) = A1 + B2 + E1 + E2 -F E3 

See [9] for a treatment of this example by the method of ascent in symmetry. 

A standard application of group theory uses the number of infrared- or Raman- 
active CO stretches of a carbonyl to distinguish between alternative possible 
geometries. Thus, from the table, CO stretches in a hypothetical trigonal- 
bipyramidal pentacarbonyl span 

F~(O2, D3h) + F~(O3, D3h) = 2A~ + A~ + E'(2 ir, 3 Raman) 

whereas a C4v geometry would lead to 

Ftr(O1, C4v ) q- Fo-(O4v, C4v ) = 2A1 + B1 + E (3 ir, 4 Raman) 

5. Applications: (ii) electronic structure of clusters 

The concepts of o- and ~ pseudosymmetries have an obvious utility in the 
molecular orbital theory of complexes and dusters. It is trivial for example to 
use Table 1 to assign point-group symmetries to the cr metal-carbonyl bonds in 
Cr(CO)6 (F,~ for 06 in Oh) and to the 7r* tangential ligand orbitals available for 
back-donation from the metal (F~ for 06 in Oh). 

In this section we review one particular application, to the electron counts of 
closo-boranes BnH~-. These molecules are deltahedral in shape and held together 
by (n+ 1) skeletal pairs (for 5 -<n-12 )  [14]. However tetrahedral clusters with 
a skeleton of four main group atoms require either 4 (B4C14) or 6 (P4) but not 5 
skeletal pairs. Three members of the hypothetical supra-icosahedral series (13--- 
n-<24) are also predicted to use n or (n+2)  but not ( n + l )  pairs [15, 16]. A 
recent group-theoretical analysis [17] of Stone's TSH (tensor surface harmonic) 
theory of clusters [2-5] showed that in both cases the non-Wade electron count 
is forced by the point-group symmetry of the cluster. The general criterion for a 
non-Wade count is found by considering F~, as reviewed in the present section. 

In TSH the skeletal molecular orbitals of a cluster are approximated by the 
solutions of a model problem- the free electron on a sphere. These analytical 
functions are the scalar spherical harmonics (o-), the even (~-) and odd (~) vector 
surface harmonics, the even (8) and odd (g) tensor surface harmonics, and higher 
functions. For the infinite, spherical model cluster there are three infinite series 

--7r of MOs (S ~, P~, D~, . . .  L~; P~ , . . .  L~; P , . . .  E ~) but for a finite cluster we count 
only the first n independent functions of o-, ~r, and ~ type respectively. In spherical 
symmetry L ~ and L ~ span the same representation and can interact whereas L~ 
cannot mix with either within the TSH model. In a finite group the o- MOs span 
F~, (~-+ ~-) MOs span F~ ( 6 + g )  span Fa and so on. More detailed reasoning 
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[3] shows that for a normal deltahedral cluster the (n+  1) skeletal pairs occupy 
S ~ and the n bonding L~/L = combinations, leaving all E = and the antibonding 
L~/L = combinations empty. 

Although the 7r and 77 MOs are of  different spherical symmetries they are related 
by a pairing principle. A r orbital is converted to a 7? orbital by the parity 
operation, a twist of each tangential p orbital in the cluster through 90 ~ all in 
the same sense. Stone has shown that this implies a mirror relationship between 
bonding ~- and antibonding 77 energies [5]. This persists even after o- - ~r mixing 
is taken into account [18]. Mathematical aspects of  the parity transformations 
are discussed in detail in [19] and its effect on 6 orbitals of metal halide clusters 
in [7, 20]. 

In terms of  representations the parity operation transforms as F~ so that 

F(L ~ ) = r ( L  ~) • r~ 

V(E ~ ) = F(L ~) • r~ 

If  we define representations as conjugate when they are related by the parity 
operation, i.e. FA and FB are conjugate if FA = FB X F~ and Fa = FAx F~, then the 
L = and L = representations are conjugate. In the spherical group, moreover, FA 
and FB are always distinct. However for the finite groups there are three 
possibilities [17]: 

(i) FA is always distinct from its conjugate FB. Groups of  this type contain the 
inversion or a trh mirror plane. They include C~, Cs, C2v, D(2n+l)d, Cnh, 8(4n-2), 
Dnh, Zh, Oh and I h. 

(ii) F g is always self-conjugate. Groups of this type describe chiral molecules 
and include Cn, Dn, T, O and I. 

(iii) Some FA are self-conjugate and some are not. The self-conjugate representa- 
tions have zero ch~Lracter under improper operations and are doubly degenerate. 
Groups of  this type are Cnv (n > 2), Sn,, D2nd and Ta. 

These considerations are relevant to the theory of  clusters because TSH assigns 
essentially bonding character to L = and antibonding character to L=. In case (i) 
the total representation F(cr+ 7?) splits into two distinct subshells [21]. In case 
(ii) it is, with one exception, easy to assign 7r and 7? just by counting half of F= 
as ~r and half as 7?. The exception is when there is an odd number of  a 
self-conjugate E-type species in F=. This may happen also for case (iii). 

If  F= = FOr + 7?) contains an odd number of  a self-conjugate E symmetry species, 
the cluster is forced by symmetry to show a non-Wade count [19]. If  one MO 
component of the E set is ~-, the other is 77 and since the two are degenerate, 
they must be nonbonding. If  this pair of MOs is empty the cluster has n skeletal 
pairs, if full (n + 2). Intermediate occupations would lead to Jahn-Teller distortion 
and loss of symmetry. 

Inspection of Table 1 reveals that for most symmetry groups of types (ii) and 
(iii) the representation F= contains an even number of the self-conjugate E 
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Table 2. Occurrence of odd numbers of self-conjugate sym- 
metry species in F=. n is greater than 2 

Group Rep Number 

c n E or E 1 mo+2m 
T E m3+2m 
Cnv E or E 1 mo+2mv+4m (n odd) 

E or E1 mo+2mv+2md+4m (n even) 
T a E m3+2ma+4m 

species. The exceptions are listed in Table 2 and from them we derive the rules 
stated in [17]. A Ca or C,v deltahedral cluster ( n >  2) has a non-Wade count if 
the number  of  skeletal atoms on the Cn axis is odd. A T or Td cluster has a 
non-Wade count if the number  of sets of  four equivalent skeletal atoms is odd. 
B4H 4 and the hypothetical [15] B16H16 and B22H22 clusters exemplify the second 
rule, whereas the hypothetical B19HI9 cluster has C3v symmetry and illustrates 
the first case. 

In fact, as Johnston and Mingos have pointed out [21], only if n = 3 can the 
cluster with an odd number  of  atoms on the principal axis be both C,v (or Cn) 
and deltahedral. The cases where n >  3 are nido clusters (which do indeed have 
n + 2  skeletal pairs). With this restriction the two rules simplify: a deltahedral 
cage of T, Td, C3 or C3v symmetry has a non-Wade electron count whenever the 
number  of  cage atoms is 3 p +  1 [21]. 

6. Applications: (iii) the spherical shell technique 

The data in Table 1 facilitate the construction of symmetry-adapted LCAO 
functions and symmetry coordinates of  molecular motion for any orbit on a 
unified basis within the spherical shell technique [6-9]. The symmetry aspects 
of  TSH theory  are exploited to give pictorial representations of  symmetry-adapted 
functions using a cartographic device, the Mollweide projection. On any orbit 
the cr symmetry-adapted functions are linear combinations of  the local or com- 
ponents with coefficients determined by the value of the appropriate  central 
spherical harmonic at each atomic position. Within the spherical shell technique 
[6-8] the orbit geometry is superimposed on Mollweide projections of  these 
central harmonics. For an orbit of  n atoms the tr symmetry-adapted functions 
are the first n distinct linear combinations to emerge from the superimposition 
process. 

In qualitative molecular orbital theory the local or components of  these symmetry- 
adapted functions are atomic orbitals at each position in an orbit. The orbitals 
can be of s, p~, d ~ . . .  type, and because of the constant overlap between 
neighbouring components the molecular orbital energies increase with the angular 
momentum quantum number  of  the central harmonic. 

For molecular motion, the ~r component  functions are radial displacements of  
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the atoms and the symmetry-adapted linear combinations contribute to the 
vibrational normal modes and to overall translation of the molecule. 

For example, consider the construction of the 0--LCAO functions for the Bt2 
cage of B~2H22. The structure has Ih symmetry and the 12o- MOs are the first 12 
distinct combinations of the local components obtained by superimposition of 
the structure on tlae icosahedral harmonics [22, 23]. The results are shown in 

Ag H o 

T,o 

T 

Fig.2. Spherical shell decomposition of the tr representation generated by the Bt2cagein Ih symmetry" 
The cage geometry is superimposed on Mollweide projections of the icosahedral harmonics. The 
shading represents regions where the harmonics are positive. The filled circles represent positive 
amplitude for the local component, and the size of the local symbol represents the magnitude of the 
coefficient (equal to the value of the central harmonic). Open circles and unshaded portions represent 
negative amplitudes. For LCAO theory the symbols represent o,-oriented atomic orbitals; for molecular 
motion the filled circles indicate radial extension and open circles contraction 
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Fig. 3. Spherical shell analysis for ~r and ~? functions on the unit  sphere. In the s tandard orientation 
7r o components  point South and ~r,~ components  point  East. The symmetry-adapted combinations 
lie in the local direction of m a x i m u m  gradient of  the central harmonic. As in Fig. 2, the size of  the 
local symbol indicates the relative contribution to the global combination. Diagrams in the left hand 
column correspond in LCAO theory to ~r orbitals of  the B12 cage and those on the right to ~" orbitals. 
Note that the sets are interchanged on local rotation of  the components  through 90 ~ . In molecular 
vibration theory the Tlg set corresponds to overall rotation (taking the phase of  the atomic p orbital 
to indicate the direction of mot ion on the surface). The Tlu sets mix vibration and rotation as discussed 
in the text 
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Fig. 2. The LCAO coefficients are readily determined from the magnitude of the 
appropriate harmonic at each atomic position, and the size of the local symbols 
is used to indicate the relative contribution to the MO. 

Alternatively, considering the results as symmetry coordinates for motion of the 
Bl2 cage, it is clear from the figure that the Tm displacements are mainly overall 
translation along the x, y and z directions (with the notation that �9 corresponds 
to radial extension, and �9 to contraction). The remaining diagrams of the figure 
correspond to approximate normal vibrations based on radial "stretching". 

The zr local components describe angle-changing motions. They span Tlu, H e, 
Gu, Tlg, Hu and Gg symmetries and the last three sets can be obtained from the 
first three by local rotation of all components through 90 ~ . 

Hg 

H 9 

Hg 

Hg 

Fig. 3. continued 

HLI 

Htl 

HI.I 

HU 

HI.I 
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The  spher ica l  shell  analys is  is set out  in Fig. 3 where  it is ev ident  tha t  the par i ty  
t r ans fo rma t ion  co r r e spond ing  to local  ro ta t ions  t h rough  90 ~ does  i ndeed  in tercon-  
vert  g and  u funct ions .  In  mo lecu l a r  o rb i ta l  t heo ry  the d i ag rams  o f  Fig. 3 are  
represen ta t ions  o f  the  p ~ - b a s e d  mo lecu l a r  orbi ta ls  for  the  B12 cage with  the  L C A O  
coefficients given by  the first par t ia l  der ivat ives  o f  the i cosahedra l  ha rmon ic s  with 

respec t  to 0 and  ~b [6-9]  at  each a tomic  pos i t ion .  To de te rmine  orb i ta l  energies ,  
it  is necessa ry  to a l low for  mix ing  o f  or and  zr MOs  as in TSH theory  [2]. 

F o r  the  analys is  o f  m o l e c u l a r  mo t ion  it is c lear  tha t  the  T~g combina t ions  o f  
angu la r  d i s tor t ions  c o r r e s p o n d  to mo lecu l a r  ro ta t ion  abou t  the  x, y and  z axes. 
The r ema in ing  combina t ions  can be  ass igned as ang le -chang ing  m o l e c u l a r  vibra-  
t ions wi th  the  excep t ion  o f  the  T~u set which  mix  t rans la t ion  and  vibra t ion .  The  
no rma l  m o d e s  o f  T~u s y m m e t r y  can be o b t a i n e d  by  sui table  c o m b i n a t i o n  o f  the  

or and  ~ sets so tha t  the  symmet ry  coord ina te s  c o r r e spond  to one set o f  pure  
angle  d i s to r t ions  and  a set o f  pu re  t rans la t ions .  Fo r  quantitative t r ea tmen t  o f  the  
no rma l  v ibra t ions  it is necessa ry  to mix  " r a d i a l "  and  " a n g u l a r "  coord ina te s  o f  
the  same symmetry .  In  this  case the  Hg modes  o f  Figs. 2 and  3 mus t  be  c o m b i n e d  
to d iagona l i se  the  force  field. Mix ing  with the  B - H  s t re tching v ibra t ions  wou ld  

also occur  in the  full t r ea tmen t  o f  B12H~;. 

References 

1. Kettle SFA (1985) Symmetry and structure. Wiley, New York 
2. Stone AJ (1980) Mol Phys 41:1339 
3. Stone AJ (1981) Inorg Chem 20:563 
4. Stone AJ (1984) Polyhedron 3:1299 
5. Stone AJ, Alterton M (1982) Inorg Chem 21:2297 
6. Redmond DB, Quinn CM, McKiernan JG (1983) J Chem Soc Faraday II 79:1791 
7. Quinn, CM, McKiernan JG, Redmond DB (1983) Inorg Chem 22:2310 
8. Quinn CM, McKiernan JG, Redmond DB (1984) J Chem Ed 61:569, 572 
9. Boyle LL (1972) Spectrochim Acta 28A:1347 

10. HerzbergG(1945) InfraredandRamanspectraofpolyatomicmolecules, chap lI, 4. Van Nostrand, 
New York 

"fi. Boyle LL (1972) Acta Cryst. A28:172 
12. Jahn HA, Teller E (1937) Proc. Roy Soc A161:220 
13. Rytter E (1976) Chem Phys 12:355 
14. Wade K (1971) J Chem Soc D 792 
15. Brown LD, Lipscomb WN (1977) Inorg Chem 16:2989 
16. Bicerano J, Marynick DS, Lipscomb WN (1978) Inorg Chem t7:2041, 3443 
17. Fowler PW (1985) Polyhedron 4:2051 
18. Fowler PW, Porterfield WW (1985) Inorg Chem. 24:3511 
19. Ceulemans A (1985) Mol Phys 54:161 
20. Ceulemans A, Fowler PW (1985) Inorg Chim Acta 105:75 
21, Johnston RL, Mingos DMP (1986) Polyhedron (in press) 
22. Boyle LL, Ozgo Z (1973) Int J Quantum Chem 7:383 
23. Quinn CM, Redmond DB: to be published 


